如何進(jìn)行LED熱量管理?從靜態(tài)冷卻、瞬態(tài)冷卻兩方面解析
摘要: 為了確保可靠的固態(tài)照明產(chǎn)品開發(fā),GILES HUMPSTON在本文中解釋了冷卻LED并為熱路徑仿真建模的復(fù)雜性。
LED是復(fù)雜的設(shè)備。LED不僅存在與半導(dǎo)體設(shè)計和操作相關(guān)的常見問題,而且LED主要用于發(fā)光。因此,光學(xué)涂層、光束管理裝置如反射器和透鏡、波長轉(zhuǎn)換熒光體等存在進(jìn)一步的系統(tǒng)復(fù)雜性。盡管如此,熱量管理對于可靠的固態(tài)照明(SSL)產(chǎn)品而言至關(guān)重要。此外,您需要了解如何在靜態(tài)和瞬態(tài)背景下冷卻LED。
對于LED,需要遵守兩個熱管理參數(shù)。一個是所需的工作溫度,另一個是最高工作溫度。通常,所需的工作溫度需要盡可能低。實現(xiàn)這一點可以確保高電光效率、良好的光譜質(zhì)量和長的器件壽命。在高溫下操作不僅會降低LED產(chǎn)生的光,而且質(zhì)量和數(shù)量方面也會降低,最終會觸發(fā)許多故障機(jī)制。
LED制造商對這些缺陷很精通,能夠設(shè)計出高達(dá)130°C結(jié)溫的產(chǎn)品。由于LED封裝的熱阻,印刷電路板(PCB)的溫度約小10°C。假如高于額定結(jié)溫,每上升10°C,LED壽命約減一半。
將電子轉(zhuǎn)換為聲子,LED效率相對較低。高亮度白光LED可以達(dá)到40%的效率,而UVC LED可能只有5%的效率。在這兩種情況下,必須通過傳導(dǎo)去除剩余的熱量以防止過熱。這是LED光源或照明設(shè)計師的責(zé)任。
靜態(tài)冷卻LED
將LED保持冷卻的常規(guī)方法是將LED器件安裝在散熱器上。來自LED的熱量通過傳導(dǎo)進(jìn)入散熱器,然后散發(fā)到空氣中。假如熱量被水或其他流體除去,散熱器有時被稱為冷板,因為相關(guān)聯(lián)的散熱系統(tǒng)經(jīng)常要設(shè)計工作流體處于低于室內(nèi)環(huán)境的固定溫度。
從LED到散熱片能否有效運輸熱量取決于高導(dǎo)熱性的材料。 例如,從圖1的圖表中可以看出,銅優(yōu)于鋁和黃銅,又優(yōu)于不銹鋼。

圖1. 材料具有不同程度的導(dǎo)熱性。
雖然銅在這些金屬中是最佳的熱導(dǎo)體,但是導(dǎo)熱系數(shù)與材料的厚度無關(guān)。通過材料傳導(dǎo)傳遞熱量的能力主要跟熱阻有關(guān),厚度越厚,熱阻越大。
電介質(zhì)和氣流
例如,中高功率LED陣列通常建立在導(dǎo)熱PCB上。在頂面,有銅板與LED進(jìn)行電連接,而在下面有一塊鋁來傳導(dǎo)熱量。在銅和鋁之間有一電介質(zhì)層,以防止銅板對鋁的電短路。各制造商在選擇介電材料方面采取了不同的方法,從有機(jī)材料到無機(jī)化合物,涵蓋了整個光譜。如圖2所示,熱電阻最小的電介質(zhì)材料幾乎是一個數(shù)量級的,可以應(yīng)用最薄的電介質(zhì)材料,同時仍能提供所需的絕緣隔離。

圖2. 電介質(zhì)材料的厚度會影響耐熱性。
但是,圖2并沒有說明全部。假設(shè)該裝置是用空氣冷卻的,在LED和散熱片之間的熱路徑中將有許多界面。一些由焊料橋接,一些由粘合劑橋接,其他將被壓在一起(例如使用螺絲)。這些接合處對熱傳導(dǎo)帶來了額外的障礙,其大小可能很大、難以預(yù)測、并隨時間而變化。
系統(tǒng)中所有熱阻和界面電阻的串聯(lián)/并行加法稱為熱阻抗,設(shè)計導(dǎo)通路徑以保持LED冷卻。計算類似于電阻網(wǎng)絡(luò)。在圖3中,電壓本質(zhì)上就是溫度,電流是熱通量,所得電阻是熱阻。

圖3. 在開發(fā)工作中,您可以依賴于熱傳導(dǎo)路徑的等效電阻。為了得到一個完整的熱阻抗系統(tǒng)模型,必須在材料之間的每個過渡處添加熱界面電阻。
凡注明為其它來源的信息,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點及對其真實性負(fù)責(zé)。
用戶名: 密碼: