如何進行LED熱量管理?從靜態冷卻、瞬態冷卻兩方面解析
摘要: 為了確保可靠的固態照明產品開發,GILES HUMPSTON在本文中解釋了冷卻LED并為熱路徑仿真建模的復雜性。
瞬態冷卻LED
先前的討論是假設在穩定狀態,即LED永久地通電并且散熱器將熱能連續地耗散到周圍空氣中。這種熱模型在兩種情況下會出現故障。一種是在接通LED時,更通常地是在脈沖操作中。令人驚訝的是,可以設計一條熱路徑,在連續工作時保持LED冷卻,但是在接通時會過熱。當這樣操作時,相關聯的熱偏移可能讓LED突然出現故障,類似于鎢絲燈絲開啟時突然斷裂一樣。因此,LED的熱解決方案設計需要考慮瞬態操作,并且包括時間和空間變量。
時間依賴
瞬態冷卻的時間分量是由于熱路徑中材料的比熱容量而產生的。這可以作為電容器添加到熱電阻的電氣模型中(圖4)。熱容量是指材料受熱(或冷卻)時吸收(或放出)熱量的性質。熱容量的大小用比熱容(簡稱比熱)表示。

圖4. 熱傳導的時間依賴是由于系統中材料的熱容量而導致的,電等效模型是RC低通濾波器。
電氣模型類比意味著熱阻抗有時用于描述材料的時間相關的熱性質。請注意,這時要注意區分,因為熱阻抗也可以用來描述整個系統的靜態熱阻。
空間依賴
瞬態冷卻的空間分量源于熱量往哪個方向擴散多一些。比如,一個安裝在大的薄金屬板上的LED。最初,整個板處于環境溫度。LED作為點熱源。在接通時,LED會產生熱量,通過傳導將熱量傳遞到板中。熱量快速通過金屬板,提高了LED下方區域的溫度。因此,最先的時候,金屬板的一小部分是來冷卻LED的。金屬板的導電性意味著LED的一些熱量會在板內橫向擴展,最終出現在表面上(圖5所示)。因此,參與冷卻LED的金屬板的體積會隨時間而增加,導致熱阻和熱容量出現明顯改變。

圖5. 一個熱體在薄金屬板上,這種簡單的有限元熱模型通過參與冷卻的板材體積的變化表現空間依賴性。這些模型的計算按照從左上到右下時間增加來進行的。
當路徑中存在高熱阻的界面或層時,空間依賴特別重要。通過采取措施就將熱量散布在該屏障之前最大的可能區域,這樣在穩態和脈沖操作中,LED可以達到更好的冷卻。
對流和輻射
高于環境溫度的任何材料都會通過對流和輻射而失去熱量。雖然這些是鎢絲燈冷卻的主要機制,但它們在LED的熱管理中起著很小的作用。但是,應該將對流和輻射包括在任何模式中,目的是確保最接近現實情況。
總之,LED必須被冷卻,以達到最佳的效率并確保其光輸出的穩定和壽命。可以使用基于電氣部件的模型來構造簡單的熱傳導穩態模型。但是,為了正確理解熱路徑,特別是在瞬態條件下的反應,最好使用可以適應時間、空間和溫度變化的工具。
熱傳導的時間和空間依賴性解釋了為什么在材料選擇方面存在層次結構。高比熱容或熱導率會隨著材料在熱路徑中的位置和LED預期的操作模式而改變。
凡注明為其它來源的信息,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點及對其真實性負責。
用戶名: 密碼: